#### Y Measurements at PHENIX

Shawn Whitaker
RHIC/AGS Users' Meeting
June 20, 2011

## Outline

- Why do we measure  $\Upsilon$ ?
- How do we measure Υ?
- Cross section in pp collisions
- Nuclear Modification factors
  - $-R_{dA}$
  - $-R_{AA}$  (ongoing)

#### Motivation

In the Quark Gluon Plasma we expect sequential screening of the resonances.



state

Measurement of heavy quarkonia suppression in Au+Au collisions can act as a thermometer of the QGP.

J/w

Heavy flavor resonances characterized by binding energy and radius



| State               | Ο, Ψ  | Λc    | Ψ(=0) |  |
|---------------------|-------|-------|-------|--|
| Mass(GeV)           | 3.10  | 3.53  | 3.69  |  |
| ∆E (GeV)            | 0.64  | 0.20  | 0.05  |  |
| r <sub>o</sub> (fm) | 0.25  | 0.36  | 0.45  |  |
| state               | Y(1S) | Y(2S) | Y(38) |  |
| Mass(GeV)           | 9.46  | 10.0  | 10.36 |  |
| ΔE (GeV)            | 1.10  | 0.54  | 0.20  |  |
| r <sub>o</sub> (fm) | 0.28  | 0.56  | 0.78  |  |
| R Arnaldi           |       |       |       |  |

R. Arnaldi

Heavy Quarks and Quarkonia QM 2011

Mocsy & Petreczky

PRL. 99, 211602 (2007)

#### MEASURING Y AT PHENIX

## The PHENIX Detector



Mid rapidity: Y→ e<sup>+</sup>e<sup>-</sup>  $|\eta|$ <0.35,  $\Delta\Phi$ = 2 x  $\pi$ /2, p>0.2 GeV/c 1.2< $|\eta|$ <2.2,  $\Delta\Phi$ =2 $\pi$ , p>2 GeV/c

Forward rapidity:  $Y \rightarrow \mu^{+}\mu^{-}$ 

## Detector Acceptance: Central Arms



10

15

20

p<sub>⊤</sub> [GeV]



 $\Upsilon$  were simulated using PHPYTHIA (top left) Two models were used to simulate the  $p_T$ distribution for  $\Upsilon$  (top right) Acceptance x Reconstruction efficiency is plotted as a function of momentum (left) The resulting integrated Acc x Eff is below

$$A \times \varepsilon_{eID}(\Upsilon) = 2.33 \pm 0.17$$
(sys. acceptance)  $\pm 0.01$ (sys. eID)%

0.005

## Detector Acceptance: Muon Arms





| Rapidity    | Thrown $\Upsilon_{Family}$ | Reconstructed $\Upsilon_{Family}$ | Accetance × Efficiency |
|-------------|----------------------------|-----------------------------------|------------------------|
|             | 566398                     | 55521.8±235.631                   | 0.0980±0.0004          |
|             | 271646                     | 13161.6±114.724                   | 0.0485±0.0004          |
|             | 170812                     | 25732.4±160.413                   | 0.1506±0.0009          |
|             | 88557                      | 14083.8±118.675                   | 0.1590±0.0013          |
|             | 35383                      | 2546.19±50.460                    | 0.0720±0.0014          |
| [1.2, 2.2]  | 563565                     | 53542.6±231.393                   | 0.0950±0.0004          |
| [1.2, 1.45] | 269834                     | 14641±121.000                     | 0.0543±0.0004          |
| [1.45, 1.7] | 169301                     | 22601.6±150.338                   | 0.1335±0.0009          |
| [1.7, 1.95] | 89032                      | 13040.1±114.193                   | 0.1465±0.0013          |
| [1.95, 2.2] | 35398                      | 3299.06±57.438                    | 0.0932±0.0016          |

 $\Upsilon$ (1S+2S+3S) were generated using PHPYTHIA. The rapidity distribution is shown in the top left plot.

The Acceptance x Efficiency values are shown above and summarized to the left.

The integrated values were used for each rapidity region because of the limited statistics in the real data.

## Dealing with Small Statistics





$$P(s) = \sum_{k=0}^{fg} \frac{(bg + fg - k)!}{bg!(fg - k)!} \frac{1}{2} \left(\frac{1}{2}\right)^{bg + fg - k} \frac{s^k e^{-s}}{k!}$$

M. Tannenbaum

#### The Process

- Using  $e^+e^-$  and  $\mu^+\mu^-$  pairs  $\Upsilon$  candidates are reconstructed from pairs with an invariant mass from 8.5-11.5 GeV
- The Y yields are estimated from these candidates after removing the background contributions
  - Combinatorial background from random e<sup>+</sup>e<sup>-</sup> or μ<sup>+</sup>μ<sup>-</sup> pairs
  - Correlated continuum background from Drell-Yan,
     open bottom and open charm (semi-leptonic decays)

## Combinatorial Background Subtraction

Run6 pp Central Arms = |y| < 0.35



## **Drell Yan**



# Drell Yan for Run8dAu South arm y-intercept: 19386.80 Slope: -0.560

#### **PHPYTHIA Settings**

| Parameters           | Index          | Setting     | Meaning                                                                                                                                             |
|----------------------|----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| msel                 |                | 11          | Single W/Z production                                                                                                                               |
| ckin                 | 1              | 3.5         | set minimum mass value as $3.5~{ m GeV}$                                                                                                            |
| parp<br>parp         | 91<br>31       | 1.5<br>1.1  | $ set k_T value = 1.5 $ $ set k factor = 1.1 $                                                                                                      |
| mstp<br>mstp<br>mstp | 32<br>33<br>51 | 4<br>1<br>7 | $\begin{array}{c} \mathrm{set}\;Q_2\;\mathrm{scale} = 4\\ \mathrm{use}\;k\;\mathrm{factor}\\ \mathrm{select\;PDF}\;\mathrm{of\;CTEQ5L} \end{array}$ |



## **Open Bottom**





#### **PHPYTHIA Settings**

| Parameters                           | Index1                     | Index2 | Setting                   | Meaning                                                                                                                                                                                                                                                |
|--------------------------------------|----------------------------|--------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| msel                                 |                            |        | 5                         | turn on bottom production of heavy flavor.                                                                                                                                                                                                             |
| pmas                                 | 5                          | 1      | 4.1                       | make bottom quark mass as $4.1~{\rm GeV}$                                                                                                                                                                                                              |
| parp<br>parp<br>mstp<br>mstp<br>mstp | 91<br>31<br>32<br>33<br>51 |        | 1.5<br>3.4<br>4<br>1<br>7 | $\operatorname{set} k_T \text{ value} = 1.5$ $\operatorname{set} k \text{ factor} = 3.4$ $\operatorname{set} Q_2 \text{ scale} = 4$ $\operatorname{use} k \text{ factor}$ $\operatorname{select} \operatorname{PDF} \text{ of } \operatorname{CTEQ5L}$ |



## **Open Charm**





#### **PHPYTHIA Settings**

msel 4 (turns on charm production) pmas 4 1 1.25 (sets charm quark mass to 1.25 GeV)



#### **Invariant Mass Distributions**



DataΥDrell YanOpen BottomOpen Charm

Data
Y
Drell Yan
Open Bottom

#### **CROSS SECTION MEASUREMENT**

#### **Current Results**

- Run 6
  - Mid-rapidity in the di-electron channel
  - Forward and backward rapidity in the di-muon channel

## Run 6 Signals







Above

Black Points: Opposite Sign Pairs

Blue Points: Same Sign Pairs

Red Points: Black - Blue

Left

Black Points: Opposite Sign Pairs

Blue Line: Same Sign Pairs

## Run 6 Results





$$\frac{dN}{dy}\Big|_{y=0} = \frac{1}{\Delta y} \times \frac{N_{\Upsilon}}{N_{BBC}} \times \frac{(1 - f_{cont})}{\varepsilon_{BBC}^{\Upsilon} \varepsilon_{ERT\_E} A \varepsilon_{eID} \varepsilon_{mass\ cut}}$$

$$B\sigma_{\Upsilon}|_{y=0} = B\frac{dN}{dy} \times \sigma_{pp} \times \varepsilon_{BBCLL1}$$

# **NUCLEAR MODIFICATION: R<sub>dA</sub>**

#### **Current Results**

- Use PHENIX p+p data as baseline
- Compare to calculated cross section from Run-8 d+Au to determine  $R_{dA}$ 
  - Currently have result from muon arms
  - Work is being done on a mid-rapidity measurement in the Central Arms

# R<sub>dA</sub> Result









#### **UPCOMING RESULTS**

## Y at Mid-Rapidity in d+Au



## Y at Mid-Rapidity in Au+Au

#### Invariant Mass Spectra in the Region[4,12GeV]



An excess can be seen in the e<sup>+</sup>e<sup>-</sup> channel at midrapidity from the central arm data.

Work is still underway calculating  $R_{AA}$ , for details see my poster.

## Summary

- Measured Υ cross-section in Run-6 p+p
- Measured R<sub>dA</sub> at forward and backward rapidity from Run-8
- Working on R<sub>dA</sub> at mid-rapidity in the dielectron channel from Run-8
- Working on R<sub>AA</sub> from Run-10 for all of the PHENIX acceptance

#### **BACKUP**

# P(s) Derivation(1)

(1) 
$$P(m)|_{\mu} = \frac{\mu^m e^{-\mu}}{m!}$$

Assume the number of counts is Poisson distribution with expectation value  $\mu$  and observed counts m. The distribution is identical if you observe a number of counts and want to know the probability of an expectation value.

(2) 
$$P(n, \mu_f, m, \mu_b) = \frac{\mu_f^n \mu_b^m e^{-\mu_f} e^{-\mu_b}}{m! n!}$$

The probability of n foreground counts and m (2)  $P(n, \mu_f, m, \mu_b) = \frac{\mu_f^n \mu_b^m e^{-\mu_f} e^{-\mu_b}}{m! n!}$  background counts given the two are measured independently can be written as the product of the two separate distribution.

Changing variables

$$s = \mu_f - \mu_b$$
,  $\mu = \mu_b$ , with Jacobean  $ds d\mu = d\mu_f d\mu_b$ .

(2)->(3) 
$$P(s,\mu)|_{m,n} = \frac{\mu^m}{m!} \frac{\mu^n}{n!} e^{-2\mu} (1 + \frac{s}{\mu})^n e^{-s}$$

# P(s) Derivation(2)

(3) 
$$P(s,\mu)|_{m,n} = \frac{\mu^m}{m!} \frac{\mu^n}{n!} e^{-2\mu} (1 + \frac{s}{\mu})^n e^{-s}$$

Expanding 
$$(1+\frac{s}{\mu})^n$$
 as sum  $(1+\frac{s}{\mu})^n=\sum_{k=0}^n\frac{n!}{(n-k)!k!}(\frac{s}{\mu})^k$ 

Results in (4) 
$$P(s,\mu)|_{m,n} = \sum_{k=0}^{n} \frac{\mu^{m+n-k}e^{-2\mu}}{m!(n-k)!} \frac{s^k e^{-s}}{k!}$$

Integrating (4) over  $\mu$  and recognizing it has the same form as a Gamma distribution with b=2 and p-1 = m+n-k gives the final result

$$P(s)|_{m,n} = \sum_{k=0}^{n} \frac{(m+n-k)!}{m!(n-k)!} \frac{1}{2} (\frac{1}{2})^{m+n-k} \frac{s^k e^{-s}}{k!}$$

Calculation done by M. Tannenbaum